Corn yield prediction in site-specific management zones using proximal soil sensing, remote sensing, and machine learning approach
-
Published:2024-10
Issue:
Volume:225
Page:109329
-
ISSN:0168-1699
-
Container-title:Computers and Electronics in Agriculture
-
language:en
-
Short-container-title:Computers and Electronics in Agriculture
Author:
Bantchina Bere BenjaminORCID, Qaswar MuhammadORCID, Arslan SelçukORCID, Ulusoy YahyaORCID, Gündoğdu Kemal SulhiORCID, Tekin YücelORCID, Mouazen Abdul MounemORCID
Reference77 articles.
1. Anonymous, 2023. MGM, Türkiye İklimi, 2023. Meteoroloji Genel Müdürlüğü. http://www.mgm.gov.tr, Accessed on 10 December 2023. 2. Control system of liquid fertilizer variable-rate fertilization based on beetle antennae search algorithm;Bai;Processes,2022 3. Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra;Barnes;Appl. Spectrosc.,1989 4. Use of UAS multispectral imagery at different physiological stages for yield prediction and input resource optimization in corn;Barzin;Remote Sens. (Basel),2020 5. Boegh, E., Soegaard, H., Broge, N., Hasager, C., Jensen, N., Schelde, K., & Thomsen, A., 2002. Airborne Multi-spectral Data for Quantifying Leaf Area Index, Nitrogen Concentration and Photosynthetic Efficiency in Agriculture.Remote Sensing of Environment,81, no. 2-3.179-193.
|
|