Efficient recognition of fish feeding behavior: A novel two-stage framework pioneering intelligent aquaculture strategies
-
Published:2024-09
Issue:
Volume:224
Page:109129
-
ISSN:0168-1699
-
Container-title:Computers and Electronics in Agriculture
-
language:en
-
Short-container-title:Computers and Electronics in Agriculture
Author:
Cai Kewei,
Yang ZhipengORCID,
Gao Tianyi,
Liang Meng,
Liu Peiyang,
Zhou Siyi,
Pang Hongshuai,
Liu Ying
Reference30 articles.
1. Application of computer vision in fish intelligent feeding system—A review;An;Aquac. Res.,2021
2. Feeding behavior classification of nile tilapia (Oreochromis niloticus) using convolutional neural network;Ben;Int. J. Adv. Trends Comput. Sci. Eng.,2020
3. Carreira, J., Zisserman, A., 2017. Quo Vadis, Action Recognition? a New Model and the Kinetics Dataset. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 6299–6308.
4. Estimating the aquatic-plant area on a pond surface using a hue-saturation-component combination and an improved Otsu method;Fan;Comput. Electron. Agric.,2021
5. Feichtenhofer, C., 2020. X3d: Expanding Architectures for Efficient Video Recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 203–213.