1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X., 2015. TensorFlow: Large-scale machine learning on heterogeneous systems, software available from tensorflow.org. .
2. Anglart, D., 2010. Automatic estimation of body weight and body condition score in dairy cows using 3d imaging technique (Master’s thesis). Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences.
3. Objective estimation of body condition score by modeling cow body shape from digital images;Azzaro;J. Dairy Sci.,2011
4. The Current State and Effects of Agromatic: A Systematic Literature Review;Bazán-Vera,2017
5. Deep learning;Bengio;Nature,2015