Subject
Horticulture,Computer Science Applications,Agronomy and Crop Science,Forestry
Reference43 articles.
1. Cai, Z., Vasconcelos, N., 2018. Cascade r-cnn: delving into high quality object detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), IEEE, pp. 6154-6162.
2. A novel hyperspectral image classification model using bole convolution with three-directions attention mechanism: small sample and unbalanced learning;Cai;IEEE Trans. Geosci. Remote Sens.,2022
3. Vision-based pest detection based on SVM classification method;Ebrahimi;Comput. Electron. Agric.,2017
4. Ghiasi, G., Lin, T., Le, Q., 2019. Nas-fpn: Learning scalable feature pyramid architecture for object detection. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (CVPR), IEEE, pp. 7036-7045.
5. Girshick, R., 2015. Fast r-cnn. In Proceedings of the IEEE international conference on computer vision (ICCV), IEEE, pp. 1440-1448.
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献