Author:
Li Xingang,Geng Hao,Zhang Liqiang,Peng Shuwen,Xin Qi,Huang Jianxi,Li Xuecao,Liu Suhong,Wang Yuebin
Funder
National Natural Science Foundation of China
National Science Fund for Distinguished Young Scholars
Subject
Horticulture,Computer Science Applications,Agronomy and Crop Science,Forestry
Reference46 articles.
1. Remote sensing-based framework to predict and assess the interannual variability of maize yields in Pakistan using Landsat imagery;Ahmad;Comput. Electron. Agric.,2020
2. Random forest in remote sensing: a review of applications and future directions;Belgiu;ISPRS J. Photogramm. Remote Sens.,2016
3. Forecasting crop yield using remotely sensed vegetation indices and crop phenology metrics;Bolton;Agric. For. Meteorol.,2013
4. Xgboost: extreme gradient boosting;Chen;R package version 0.4-2,2015
5. Chung, J., Gulcehre, C., Cho, K. and Bengio, Y., 2014. Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555.
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献