1. Soft-nms: Improving object detection with one line of code;Bodla,2017
2. Cai, Z., Vasconcelos, N., 2018. Cascade r-cnn: Delving into high quality object detection. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6154–6162. doi:10.1109/CVPR.2018.00644.
3. Chen, K., Wang, J., Pang, J., Cao, Y., Xiong, Y., Li, X., Sun, S., Feng, W., Liu, Z., Xu, J., Zhang, Z., Cheng, D., Zhu, C., Cheng, T., Zhao, Q., Li, B., Lu, X., Zhu, R., Wu, Y., Dai, J., Wang, J., Shi, J., Ouyang, W., Loy, C.C., Lin, D., 2019. Mmdetection: Open mmlab detection toolbox and benchmark. CoRR abs/1906.07155. http://arxiv.org/abs/1906.07155, arXiv:1906.07155.
4. Back-propagation applied to handwritten zip-code recognition;Cun;Neural Computation - NECO.,1992
5. Fast r-cnn;Girshick,2015