Ultra-short-term wind power prediction based on PVMD-ESMA-DELM
Author:
Publisher
Elsevier BV
Subject
General Energy
Reference45 articles.
1. A new intelligent method based on combination of VMD and ELM for short term wind power forecasting;Abdoos;Neurocomputing,2016
2. Improving streamflow prediction using a new hybrid ELM model combined with hybrid particle swarm optimization and grey wolf optimization;Adnan;Knowl.-Based Syst.,2021
3. Gaussian models for probabilistic and deterministic wind power prediction: Wind farm and regional;Ahmadpour;Int. J. Hydrogen Energy,2020
4. Extracting appropriate nodal marginal prices for all types of committed reserve;Akbary;Comput. Econ.,2019
5. Knowledge structure and research progress in wind power generation (WPG) from 2005 to 2020 using CiteSpace based scientometric analysis;Azam;J. Clean. Prod.,2021
Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Numerical investigation on Al2O3 droplet spreading and its prediction model exploration based on Harris Hawks optimization-generalized regression neural network in stereolithography;Physics of Fluids;2024-09-01
2. Advancing Ultra-Short-Term Wind Power Forecasting with Multi-Channel ML Techniques;2024 6th International Conference on Energy Systems and Electrical Power (ICESEP);2024-06-21
3. Short-Term Exhaust Gas Temperature Trend Prediction of a Marine Diesel Engine Based on an Improved Slime Mold Algorithm-Optimized Bidirectional Long Short-Term Memory—Temporal Pattern Attention Ensemble Model;Journal of Marine Science and Engineering;2024-03-24
4. The ultra-short-term wind power point-interval forecasting model based on improved variational mode decomposition and bidirectional gated recurrent unit improved by improved sparrow search algorithm and attention mechanism;Energy;2024-02
5. Forecasting model for short-term wind speed using robust local mean decomposition, deep neural networks, intelligent algorithm, and error correction;Frontiers in Energy Research;2024-01-25
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3