Classifying attack traffic in IoT environments via few-shot learning
-
Published:2024-06
Issue:
Volume:83
Page:103762
-
ISSN:2214-2126
-
Container-title:Journal of Information Security and Applications
-
language:en
-
Short-container-title:Journal of Information Security and Applications
Author:
Bovenzi GiampaoloORCID,
Di Monda Davide,
Montieri AntonioORCID,
Persico ValerioORCID,
Pescapè AntonioORCID
Reference46 articles.
1. Demystifying IoT security: An exhaustive survey on IoT vulnerabilities and a first empirical look on Internet-scale IoT exploitations;Neshenko;IEEE Commun Surveys Tuts,2019
2. Aceto G, Ciuonzo D, Montieri A, Persico V, Pescapé A. MIRAGE: Mobile-app traffic capture and ground-truth creation. In: IEEE ICCCS. 2019, p. 1–8.
3. AppClassNet: A commercial-grade dataset for application identification research;Wang;ACM SIGCOMM CRR,2022
4. IoT-23: A labeled dataset with malicious and benign IoT network traffic;Garcia,2020
5. Huang S, Liu Y, Fung C, An W, He R, Zhao Y, et al. A gated few-shot learning model for anomaly detection. In: IEEE ICOIN. 2020, p. 505–9.