Author:
Bellido-Jiménez Juan Antonio,Estévez Javier,García-Marín Amanda Penélope
Funder
Universidad de Córdoba
Spanish National Plan for Scientific and Technical Research and Innovation
Subject
Earth-Surface Processes,Soil Science,Water Science and Technology,Agronomy and Crop Science
Reference98 articles.
1. Extreme learning machines: a new approach for prediction of reference evapotranspiration;Abdullah;J. Hydrol.,2015
2. Evaluation of potential evapotranspiration methods for Ghana;Acheampong;GeoJournal,1986
3. Temperature based generalized wavelet-neural network models to estimate evapotranspiration in India;Adamala;Inf. Process. Agric.,2018
4. Akusok, A., Björk, K.-M., Miche, Y., Lendasse, A., 2015. High performance extreme learning machines: a complete toolbox for big data applications. Access, IEEE, pp.1-1, doi: 10.1109/ACCESS.2015.2450498.
5. Allen, R., Pereira, L., Smith, M., 1998. Crop evapotranspiration-Guidelines for computing crop water requirements, FAO Irrigation and Drainage.
Cited by
51 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献