The security implications of quantum cryptography and quantum computing

Author:

Cavaliere Fabio1,Mattsson John1,Smeets Ben1

Affiliation:

1. Ericsson Research

Abstract

Classical cryptography relies on the assumption that nobody can solve a certain difficult mathematical problem in a realistic amount of time or rely on information theory arguments. Quantum cryptography relies instead on fundamental quantum physics laws. Using large quantum computers, one could break all classical asymmetric algorithms currently used for key distribution and digital signatures. Quantum computing seems to threaten many of the encryption systems in use today, which assume that nobody can solve a difficult mathematical problem in a realistic amount of time. Fabio Cavaliere, John Mattsson and Ben Smeets of Ericsson Research provide an overview of the technologies and protocols for Quantum key distribution (QKD) systems, discuss their security implications and examine standardisation activities for QKD networks. They also introduce quantum random number generators (QRNGs) as an important building block for both classical and quantum encryption systems, and address the security challenges posed by the advent of quantum computers.

Publisher

Mark Allen Group

Subject

Information Systems and Management,Computer Networks and Communications,Safety, Risk, Reliability and Quality

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3