A novel deep learning scheme for multi-condition remaining useful life prediction of rolling element bearings
Author:
Funder
National Natural Science Foundation of China
Publisher
Elsevier BV
Subject
Industrial and Manufacturing Engineering,Hardware and Architecture,Software,Control and Systems Engineering
Reference39 articles.
1. High-performance and energy-efficient fault diagnosis using effective envelope analysis and de-noising on a general-purpose graphics processing unit;Kang;Ieee Trans Power Electron,2015
2. Reliable multiple combined fault diagnosis of bearings using heterogeneous feature models and multiclass support vector;Islam;Machines Reliability Eng System Safety,2019
3. Intelligent prognostics of machinery health utilizing suspended condition monitoring data;Heng,2009
4. Remaining useful life estimation in prognostics using deep convolution neural networks;Li;Reliab Eng Syst Saf,2018
5. A recurrent neural network based health indicator for remaining useful life prediction of bearings;Guo;Neu-rocomputing,2017
Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A dual-stream spatio-temporal fusion network with multi-sensor signals for remaining useful life prediction;Journal of Manufacturing Systems;2024-10
2. Fractional derivative kernel recursive generalized maximum correntropy for RUL prediction of rolling bearings;Mechanical Systems and Signal Processing;2024-08
3. Condition Monitoring and Fault Diagnosis of Rotating Machinery Towards Intelligent Manufacturing: Review and Prospect;Iranian Journal of Science and Technology, Transactions of Mechanical Engineering;2024-06-11
4. Leakage detection of an acoustic emission pipeline based on an improved transformer network;Engineering Research Express;2024-05-24
5. A bearing remaining life prediction method under variable operating conditions based on cross-transformer fusioning segmented data cleaning;Reliability Engineering & System Safety;2024-05
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3