1. Angelini ED, Atif J, Delon J, Mandonnet E, Duffau H, Capelle L. Detection of glioma evolution on longitudinal MRI studies, in 2007. In: Proceedings of the 4th IEEE International symposium on biomedical imaging: from nano to macro, p. 49–52 [Online]. Available: 〈http://ieeexplore.ieee.org/xpls/abs_all.jsp?Arnumber=4193219〉; 2007. [accessed Aug 10, 2016].
2. Angelini ED, Delon J, Capelle L, Mandonnet E. Contrast mapping and statistical testing for low-grade glioma growth quantification on brain mri. In: 2010 IEEE international symposium on biomedical imaging: from nano to macro, p. 872–875 [Online]. Available: 〈http://ieeexplore.ieee.org/xpls/abs_all.jsp?Arnumber=5490125〉; 2010. [accessed Sep 06, 2016].
3. Konukoglu E, Wells WM, Novellas S, Ayache N, Kikinis R, Black PM, Pohl KM. Monitoring slowly evolving tumors, in 2008. In: Proceedings of the 5th IEEE international symposium on biomedical imaging: from nano to macro, p. 812–815 [Online]. Available: 〈http://ieeexplore.ieee.org/xpls/abs_all.jsp?Arnumber=4541120〉; 2008. [accessed Aug 10, 2016].
4. A new metric for detecting change in slowly evolving brain tumors: validation in Meningioma patients:;Pohl;Oper Neurosurg,2011
5. Kohonen T. Automatic formation of topological maps of patterns in a self-organizing system, in 2nd Scand. Conference on Image Analysis, Espoo, Finland; 1981. p. 214–220.