Predicting hospital readmission risk in patients with COVID-19: A machine learning approach
Author:
Funder
Ilam University of Medical Sciences
Publisher
Elsevier BV
Subject
Health Informatics
Reference62 articles.
1. Using ensemble machine learning methods for predicting risk of readmission for heart failure;Mahajan;Stud Health Technol Inf,2019
2. The readmission risk flag: using the electronic health record to automatically identify patients at risk for 30‐day readmission;Baillie;J Hosp Med,2013
3. Predicting all-cause risk of 30-day hospital readmission using artificial neural networks;Jamei;PLoS One,2017
4. Early Hospital Readmission (EHR) in kidney transplantation: a review article;Tavares;Braz J Nephrol,2020
5. Machine learning-based prediction models for 30-day readmission after hospitalization for chronic obstructive pulmonary disease;Goto;COPD,2019
Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Diagnostic significance of multisequence MRI radiomics models in distinguishing benign and malignant spinal fractures;Journal of Radiation Research and Applied Sciences;2024-09
2. Revolutionizing Healthcare: The Unprecedented Role of Artificial Intelligence in Medicine;ASTHMA ALLERGY IMMUN;2024
3. Machine Learning-Based Prediction of Readmission Risk in Cardiovascular and Cerebrovascular Conditions Using Patient EMR Data;Healthcare;2024-07-28
4. Predictive Modeling of COVID-19 Readmissions: Insights from Machine Learning and Deep Learning Approaches;Diagnostics;2024-07-12
5. Predictive Analytics for Hospital Readmissions Using Logistic Regression and IoT Sensor Data;2024 6th International Conference on Energy, Power and Environment (ICEPE);2024-06-20
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3