Insights into nitrogen-doped BiOBr with oxygen vacancy and carbon quantum dots photocatalysts for the degradation of sulfonamide antibiotics: Actions to promote exciton dissociation and carrier migration
Author:
Funder
National Natural Science Foundation of China
Publisher
Elsevier BV
Reference73 articles.
1. Rapid dissociation of high concentration excitons between [Bi2O2]2+slabs with multifunctional N-Bi-O sites for selective photoconversion into CO;Zhou;APPLIED CATALYSIS B-ENVIRONMENTAL,2023
2. Key role of Fe(VI)-activated Bi2WO6 in the photocatalytic oxidation of sulfonamides: Mediated electron transfer mechanism;Zhang;Journal of Hazardous Materials,2023
3. Activation of periodate by N-doped iron-based porous carbon for degradation of sulfisoxazole: Significance of catalyst-mediated electron transfer mechanism;Luo;J. Hazard. Mater.,2023
4. Highly efficient activation of peracetic acid via zero-valent iron-copper bimetallic nanoparticles (nZVIC) for the oxidation of sulfamethazine in aqueous solution under neutral condition;Xiao;Appl Catal B,2024
5. LaCo0.5Ni0.5O3 perovskite for efficient sulfafurazole degradation via peroxymonosulfate activation: Catalytic mechanism of interfacial structure;He;Appl Catal B,2023
Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Efficient degradation of bisphenol A by a novel ternary synergistic dielectric barrier discharge plasma advanced oxidation process: The role of peracetic acid and ferrous ions;Separation and Purification Technology;2025-02
2. Synergetic photocatalytic degradation of the tetracycline antibiotic over S-scheme based BiOBr/CuInS2/WO3 ternary heterojunction photocatalyst;Solid State Sciences;2024-09
3. Ti3C2 quantum dots-modified oxygen-vacancy-rich BiOBr hollow microspheres toward optimized photocatalytic performance;Chemosphere;2024-09
4. A Tight-Connection g-C3N4/BiOBr (001) S-Scheme Heterojunction Photocatalyst for Boosting Photocatalytic Degradation of Organic Pollutants;Nanomaterials;2024-06-22
5. Revealing the importance of non-radical mechanisms in the degradation of sulfamethazine by Lewis acid-etched Co@MXene-activated peroxyacetic acid;Environmental Science: Nano;2024
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3