New weighted Trudinger-Moser inequality for functions not necessarily radially symmetric and applications
-
Published:2024-09
Issue:
Volume:
Page:128877
-
ISSN:0022-247X
-
Container-title:Journal of Mathematical Analysis and Applications
-
language:en
-
Short-container-title:Journal of Mathematical Analysis and Applications
Reference43 articles.
1. A. Abreu, L.G. Fernandez Jr., On a weighted Trudinger-Moser inequality in RN, J. Differential Equations, 269 (2020) 3089-3118.
2. S. Adachi, K. Tanaka, Trudinger type inequalities in RN and their best exponents. Proc. Am. Math. Soc. 128 (1999) 2051-2057.
3. A.C. Cavalheiro, Weighted Sobolev Spaces and Degenerate Elliptic Equations, Bol. Soc. Paran. Mat. Vol 26 (2008) 117-132.
4. F.S.B. Albuquerque, C.O. Alves, E.S. Medeiros, Nonlinear Schrödinger equation with unbounded or decaying radial potentials involving exponential critical growth in R2, J. Math. Anal. Appl. 409 (2014) 1021-1031.
5. F.S.B. Albuquerque, Sharp constant and extremal function for weighted Trudinger-Moser type inequalities in R2, J. Math. Anal. Appl. 421 (2015) 963-970.