Navier-Stokes equations on non-compact Einstein manifolds: Stability implies periodicity
Author:
Funder
Bộ Giáo dục và Ðào tạo
National Foundation for Science and Technology Development
Publisher
Elsevier BV
Subject
Applied Mathematics,Analysis
Reference34 articles.
1. Remarks on the weak formulation of the Navier-Stokes equations on the 2D hyperbolic space;Chan;Ann. Inst. Henri Poincaré, Anal. Non Linéaire,2016
2. The formulation of the Navier-Stokes equations on Riemannian manifolds;Chan;J. Geom. Phys.,2017
3. Stability of Solutions of Differential Equations in Banach Spaces;Daleckii,1974
4. Groups of diffeomorphisms and the motion of an incompressible fluid;Ebin;Ann. Math. (2),1970
5. Existence and uniqueness of time-periodic physically reasonable Navier–Stokes flows past a body;Galdi;Arch. Ration. Mech. Anal.,2004
Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Almost periodic motions and their stability of the non-autonomous Oseen–Navier–Stokes flows;Archiv der Mathematik;2024-09-03
2. Ricci curvature and the size of initial data for the Navier–Stokes equations on Einstein manifolds;Archiv der Mathematik;2023-10-11
3. Periodic Motions of the Non-autonomous Oseen–Navier–Stokes Flows Past a Moving Obstacle with Data in Lp-Spaces;Vietnam Journal of Mathematics;2023-01-09
4. Stability and periodicity of solutions to Navier-Stokes equations on non-compact riemannian manifolds with negative curvature;Analysis and Mathematical Physics;2022-06-11
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3