1. Arthur, D., & Vassilvitskii, S. (2007). K-means++: The advantages of careful seeding. In Proceedings of the eighteenth annual ACM-SIAM symposium on discrete algorithms, SODA ’07 (pp. 1027–1035). Philadelphia, PA, USA: Society for Industrial and Applied Mathematics.
2. Algorithm 862: MATLAB tensor classes for fast algorithm prototyping;Bader;ACM Transactions on Mathematical Software,2006
3. Boutsidis, C., Drineas, P., & Mahoney, M. W. (2009). Unsupervised feature selection for the k-means clustering problem. In Advances in neural information processing systems. (Vol. 22, pp. 153–161). Curran Associates, Inc.
4. A dendrite method for cluster analysis;Caliński;Communications in Statistics,1974
5. Multi-dimensionalscaling;Cox,1994