Bus Arrival Time Prediction Using RBF Neural Networks Adjusted by Online Data
Author:
Publisher
Elsevier BV
Subject
General Medicine
Reference11 articles.
1. Biagioni, J., Gerlich, T., Merrifield, T., & Eriksson, J. (2011). Easytracker: automatic transit tracking, mapping, and arrival time prediction using smartphones. In Proceedings of the 9th ACM Conference on Embedded Networked Sensor Systems (pp. 68-81). ACM.
2. Jeong, R., & Rilett, R. (2004). Bus arrival time prediction using artificial neural network model. In Intelligent Transportation Systems, 2004. Proceedings. The 7th International IEEE Conference on (pp. 988-993). IEEE.
3. Kalman, R.E. (1960). A new approach to linear filtering and prediction problems. Journal of basic Engineering, 82, 35-45.
4. Lin, Y., Yang, X., Zou, N., & Jia, L. (2013). Real-Time bus arrival time prediction: A case study for Jinan, China. Journal of Transportation Engineering, 139, 1133-1140.
5. Lin, W.H., & Zeng, J. (1999). Experimental study of real-time bus arrival time prediction with GPS data. Transportation Research Record: Journal of the Transportation Research Board, 1666, 101-109.
Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A Sequence and Network Embedding Method for Bus Arrival Time Prediction Using GPS Trajectory Data Only;IEEE Transactions on Intelligent Transportation Systems;2023-05
2. Multiple Extreme Learning Machines Based Arrival Time Prediction for Public Bus Transport;Intelligent Automation & Soft Computing;2023
3. Particle swarm optimization and RBF neural networks for public transport arrival time prediction using GTFS data;International Journal of Information Management Data Insights;2022-11
4. Hybrid Model to Predict the Arrival Time at Tollgate of Vehicles on Expressway;2022 10th International Conference on Traffic and Logistic Engineering (ICTLE);2022-08-12
5. A review of bus arrival time prediction using artificial intelligence;WIREs Data Mining and Knowledge Discovery;2022-04-03
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3