The Impact of Race, Ethnicity, and Sex on Fairness in Artificial Intelligence for Glaucoma Prediction Models
-
Published:2024-08
Issue:
Volume:
Page:100596
-
ISSN:2666-9145
-
Container-title:Ophthalmology Science
-
language:en
-
Short-container-title:Ophthalmology Science
Author:
Ravindranath Rohith, Stein Joshua D., Hernandez-Boussard Tina, Fisher A. Caroline, Wang Sophia Y.ORCID, Amin Sejal, Edwards Paul A., Srikumaran Divya, Woreta Fasika, Schultz Jeffrey S., Shrivastava Anurag, Ahmad Baseer, Bryar Paul, French Dustin, Vanderbeek Brian L., Pershing Suzann, Lynch Anne M., Patnaik Jennifer L., Munir Saleha, Munir Wuqaas, Stein Joshua, DeLott Lindsey, Stagg Brian C., Wirostko Barbara, McMillian Brian, Sheybani Arsham, Sarrapour Soshian, Nwanyanwu Kristen, Deiner Michael, Sun Catherine, Feldman Robert, Ramachandran Rajeev
Funder
National Eye Institute Research to Prevent Blindness
Reference46 articles.
1. Recurrent neural network models (CovRNN) for predicting outcomes of patients with COVID-19 on admission to hospital: model development and validation using electronic health record data;Rasmy;Lancet Digit Health,2022 2. Predicting next-day discharge via electronic health record access logs;Zhang;J Am Med Inform Assoc,2021 3. Predicting hospitalizations from electronic health record data;Morawski;Am J Manag Care,2020 4. Predicting outcomes of psychotherapy for depression with electronic health record data;Coley;J Affect Disord Rep,2021 5. Using EHRs and Machine Learning for Heart Failure Survival Analysis;Panahiazar;Stud Health Technol Inform,2015
|
|