1. M. Ackerman, D. Billsus, S. Gaffney, S. Hettich, G. Khoo, D. Kim, R. Klefstad, C. Lowe, A. Ludeman, J. Muramatsu, K. Omori, M. Pazzani, D. Semler, B. Starr and P. Yap, Learning probabilistic user profiles: applications to finding interesting web sites, notifying users of relevant changes to web pages, and locating grant opportunities, AI Magazine 18(2): 47–56, 1997, online at http://www.ics.uci.edu/~pazzani/Publications/AI-MAG.pdf
2. K. Bharat and A. Broder, A technique for measuring the relative size and overlap of public web search engines, in: Proc. of the 7th World-Wide Web Conference (WWW7), 1998, online at http://www7.scu.edu.au/programme/fullpapers/1937/com1937.htm; also see an update at http://www.research.digital.com/SRC/whatsnew/sem.html
3. K. Bharat and M. Henzinger, Improved algorithms for topic distillation in a hyperlinked environment, in: SIGIR Conference on Research and Development in Information Retrieval, vol. 21. ACM, 1998, online at ftp://ftp.digital.com/pub/DEC/SRC/publications/monika/sigir98.pdf
4. S. Brin and L. Page, The anatomy of a large-scale hypertextual web search engine, in: Proc. of the 7th World-Wide Web WWW Conference, 1998, online at http://google.stanford.edu/~backrub/google.html
5. S. Chakrabarti, B. Dom, R. Agrawal and P. Raghavan, Scalable feature selection, classification and signature generation for organizing large text databases into hierarchical topic taxonomies, VLDB Journal 7(3): 163–178, 1998.