1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., … Zheng, X. (2016). TensorFlow: large-scale machine learning on heterogeneous distributed systems. http://arxiv.org/abs/1603.04467
2. Data-driven charging demand prediction at public charging stations using supervised machine learning regression methods;Almaghrebi;Energies,2020
3. Economic implications of a connected and automated mobility in Europe;Alonso Raposo;Res. Transp. Econ.,2021
4. Spatial and temporal model of electric vehicle charging demand;Bae;IEEE Trans. Smart Grid,2012
5. Empirical mode decomposition based deep learning for electricity demand forecasting;Bedi;IEEE Access,2018