1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X., 2015. TensorFlow: Large-scale machine learning on heterogeneous systems, software available from tensorflow.org. URL 〈http://tensorflow.org/〉.
2. Maximum likelihood localization of radioactive sources against a highly fluctuating background;Bai;IEEE Trans. Nucl. Sci.,2015
3. Learning long-term dependencies with gradient descent is difficult;Bengio;IEEE Trans. Neural Netw.,1994
4. Random search for hyper-parameter optimization;Bergstra;J. Mach. Learn. Res.,2012
5. Chandy, M., Pilotto, C., McLean, R., 2008. Networked sensing systems for detecting people carrying radioactive material. In: Proceedings of the 5th International Conference on Networked Sensing Systems, 2008. INSS 2008, pp. 148–155. http://pubs.acs.org/doi/10.1109/INSS.2008.4610916.