HRV based feature selection for congestive heart failure and normal sinus rhythm for meticulous presaging of heart disease using machine learning

Author:

Aggarwal RituORCID,Kumar Suneet

Publisher

Elsevier BV

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Mechanics of Materials,Electronic, Optical and Magnetic Materials

Reference24 articles.

1. Principal Component Analysis based on data characteristics for dimensionality reduction of ECG recordings in arrhythmia classification;Wosiak;Open Phys. DeGruyter,2019

2. Informatics in medicines locked;Ayar;Elsevier,2018

3. Elsevier, Classification models for heart disease prediction using feature selection and PCA;Garate-Escamilla;Info. Med.,2020

4. Electrocardiogram generation and feature extraction using a variational autoencoder;Kuznetsov;arXiv preprint arXiv,2020

5. A Comparative Approach to ECG Feature Extraction Methods, Third International Conference on Intelligent Systems Modeling and Simulation;Vaneghi,2012

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A novel IMW-mrmr feature selection approach for early detection of hypertension with HRV analysis;International Journal of Information Technology;2024-07-01

2. TAVR: An Automated Approach for Detection and Diagnosis Using Machine Learning Prediction Models;2023 3rd International Conference on Advancement in Electronics & Communication Engineering (AECE);2023-11-23

3. HIGGA: An Hybridization Approach for Classification Model HD Prediction using Machine Learning;2023 IEEE International Conference on Contemporary Computing and Communications (InC4);2023-04-21

4. A Meticulous Presaging of Heart Disease Optimized by Boruta feature Selection and RFE over Gradient Boosting;2022 OPJU International Technology Conference on Emerging Technologies for Sustainable Development (OTCON);2023-02-08

5. Pre-eclampsia Risk Factors Association with Cardiovascular Disease Prediction and Diagnosing Using Machine Learning;Lecture Notes in Electrical Engineering;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3