Refined composite hierarchical multiscale Lempel-Ziv complexity: A quantitative diagnostic method of multi-feature fusion for rotating energy devices
Author:
Publisher
Elsevier BV
Subject
Renewable Energy, Sustainability and the Environment
Reference61 articles.
1. Multi-fault diagnosis of Industrial Rotating Machines using Data-driven approach: a review of two decades of research;Gawde;Eng. Appl. Artif. Intell.,2023
2. Application of neural network algorithm in fault diagnosis of mechanical intelligence;Xu;Mech. Syst. Signal Process.,2020
3. A feature extraction and machine learning framework for bearing fault diagnosis;Cui;Renew. Energy,2022
4. The fault frequency priors fusion deep learning framework with application to fault diagnosis of offshore wind turbines;Xie;Renew. Energy,2023
5. Fault diagnosis of train rotating parts based on multi-objective VMD optimization and ensemble learning;Jin;Digit. Signal Process.,2022
Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Image Enhancement Based on Dual-Branch Generative Adversarial Network Combining Spatial and Frequency Domain Information for Imbalanced Fault Diagnosis of Rolling Bearing;Symmetry;2024-04-24
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3