Improving performance of deep learning predictive models for COVID-19 by incorporating environmental parameters
-
Published:2023-02
Issue:
Volume:114
Page:69-77
-
ISSN:1342-937X
-
Container-title:Gondwana Research
-
language:en
-
Short-container-title:Gondwana Research
Author:
Wathore RoshanORCID, Rawlekar Samyak, Anjum Saima, Gupta Ankit, Bherwani HemantORCID, Labhasetwar Nitin, Kumar Rakesh
Reference57 articles.
1. Prediction of COVID-19 confirmed cases combining deep learning methods and Bayesian optimization;Abbasimehr;Chaos Solitons Fractals,2021 2. Adiga, A., Wang, L., Hurt, B., Peddireddy, A., Porebski, P., Venkatramanan, S., Lewis, B., Marathe, M., 2021. All Models Are Useful: Bayesian Ensembling for Robust High Resolution COVID-19 Forecasting. MedRxiv Prepr. Serv. Health Sci. 2021.03.12.21253495. https://doi.org/10.1101/2021.03.12.21253495. 3. Ambade, B., Kumar, Amit, Kumar, Ashwini, Sahu, L.K., 2021a. Temporal variability of atmospheric particulate-bound polycyclic aromatic hydrocarbons (PAHs) over central east India: sources and carcinogenic risk assessment. Air Qual. Atmosphere Health. https://doi.org/10.1007/s11869-021-01089-5. 4. Emission reduction of black carbon and polycyclic aromatic hydrocarbons during COVID-19 pandemic lockdown;Ambade;Air Qual. Atmosphere Health,2021 5. COVID-19 lockdowns reduce the Black carbon and polycyclic aromatic hydrocarbons of the Asian atmosphere: source apportionment and health hazard evaluation;Ambade;Environ. Dev. Sustain.,2021
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|