Machinery fault diagnosis using joint global and local/nonlocal discriminant analysis with selective ensemble learning
Author:
Publisher
Elsevier BV
Subject
Mechanical Engineering,Mechanics of Materials,Acoustics and Ultrasonics,Condensed Matter Physics
Reference45 articles.
1. PCA-based feature selection scheme for machine defect classification;Malhi;IEEE Transactions on Instrumentation and Measurement,2004
2. Gear fault detection using artificial neural networks and support vector machines with genetic algorithms;Samanta;Mechanical Systems and Signal Processing,2004
3. Health monitoring of a glass transfer robot in the mass production line of liquid crystal display using abnormal operating sounds based on wavelet packet transform and artificial neural network;Kim;Journal of Sound and Vibration,2012
4. Fault diagnosis of rotating machinery based on improved wavelet package transform and SVMs ensemble;Hu;Mechanical Systems and Signal Processing,2007
5. Early classifications of bearing faults using hidden Markov models, Gaussian mixture models, mel-frequency ceptral coefficients and fractals;Nelwamondo;International Journal of Innovative Computing Information and Control,2006
Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A literature review of fault diagnosis based on ensemble learning;Engineering Applications of Artificial Intelligence;2024-01
2. Discriminant Analysis Based on the Patch Length and Crack Depth to Determine the Convergence of Global–Local Non-Intrusive Analysis with 1D-to-3D Coupling;Symmetry;2023-11-15
3. Mechanical Equipment Performance Degradation Assessment Method Based on Improved Degradation Feature Extraction and Sample Completeness;The International Journal of Acoustics and Vibration;2023-03-26
4. Bearing Fault Diagnosis Based on Compressed Data and Supervised Global-Local/Nonlocal Discriminant Analysis;Mechanisms and Machine Science;2023
5. Research on Diesel Engine Fault Diagnosis Method Based on Stacked Sparse Autoencoder and Support Vector Machine;Electronics;2022-07-18
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3