Author:
Silva Fernanda B.,Uribe Luisa F.S.,Cepeda Felipe X.,Alquati Vitor F.S.,Guimarães João P.S.,Silva Yuri G.A.,Santos Orlem L. dos,de Oliveira Alberto A.,de Aguiar Gabriel H.M.,Andersen Monica L.,Tufik Sergio,Lee Wonkyu,Li Lin Tzy,Penatti Otávio A.
Funder
Fundação de Amparo à Pesquisa do Estado de São Paulo
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Associação Fundo de Incentivo à Pesquisa
Samsung Eletrônica da Amazônia
Reference46 articles.
1. The promise of sleep: a multi-sensor approach for accurate sleep stage detection using the oura ring;Altini;Sensors,2021
2. Estimation of sleep stages in a healthy adult population from optical plethysmography and accelerometer signals;Beattie;Physiol Meas,2017
3. Sleep-wake stages classification using heart rate signals from pulse oximetry;Casal;Heliyon,2019
4. A deep learning architecture for temporal sleep stage classification using multivariate and multimodal time series;Chambon;IEEE Trans Neural Syst Rehabil Eng,2017
5. Performance of seven consumer sleep-tracking devices compared with polysomnography;Chinoy;Sleep,2020