1. MVTecAD–A comprehensive real-world dataset for unsupervised anomaly detection;Bergmann,2019
2. Mixed supervision for surface-defect detection: from weakly to fully supervised learning;Božič;Comput Ind,2021
3. Future frame prediction for anomaly detection–a new baseline;Liu,2018
4. Seeböck, P., Waldstein, S., Klimscha, S., Gerendas, B.S., Donner, R., Schlegl, T., ... & Langs, G. (2016). Identifying and categorizing anomalies in retinal imaging data. arixv preprint arixv:1612.00686.
5. Draem-a discriminatively trained reconstruction embedding for surface anomaly detection;Zavrtanik,2021