Multi-Object Detection using Enhanced YOLOv2 and LuNet Algorithms in Surveillance Videos
-
Published:2024-06
Issue:
Volume:8
Page:100535
-
ISSN:2772-6711
-
Container-title:e-Prime - Advances in Electrical Engineering, Electronics and Energy
-
language:en
-
Short-container-title:e-Prime - Advances in Electrical Engineering, Electronics and Energy
Author:
Mohandoss T.,Rangaraj J.
Reference25 articles.
1. Center-point-pair detection and context-aware re-identification for end-to-end multi-object tracking;Zhang;Neurocomputing,2023
2. A Review of Deep Learning-Based Visual Multi-Object Tracking Algorithms for Autonomous Driving;Guo;Appl. Sci.,2022
3. Multi-Object tracking with mmWave Radar: A Review;Pearce;Electronics,2023
4. Cao, J.; Weng, X.; Khirodkar, R.; Pang, J.; Kitani, K. Observation-centric sort: Rethinking sort for robust multi-object tracking. arXiv 2022, arXiv:2203.14360.
5. Deep learning in multi-object detection and tracking: State of the art;Pal;Appl. Intell.,2021