Tool Wear Classification Using Decision Treesin Stone Drilling Applications: A Preliminary Study
Author:
Publisher
Elsevier BV
Subject
Applied Mathematics
Reference22 articles.
1. R. Teti, K. Jemielniak, G. O’Donnell, D. Dornfeld, “Advanced monitoring of machining operations”, CIRP Annals - Manufacturing Technology, Vol. 59, no. 2, pp. 717-739, 2010.
2. E. Jantunen, “A summary of methods applied to tool condition monitoring in drilling”, Journal of Machine Tools and Manufacture, Vol. 42, no. 9, pp. 997-1010, 2002.
3. H.M. Ertunc, K.A. Loparo, “A decision fusion algorithm for tool wear condition monitoring in drilling”, International Journal of Machine Tools and Manufacture, Vol. 41, no. 9, pp. 1347-1362, 2001.
4. I. Abu-Mahfouz, “Drilling wear detection and classification using vibration signals and artificial neural network”, International Journal of Machine Tools and Manufacture, Vol. 43, no. 7, pp. 707-720, 2003.
5. A. Faraz, D. Biermann, K. Weinert, “Cutting edge rounding: An innovative tool wear criterion in drilling CFRP composite laminates”, International Journal of Machine Tools and Manufacture, Vol. 49, no. 15, pp. 1185-1196, 2009.
Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Monitoring the Machining State of Machine Tools Using Artificial Neural Networks with Time-series Data;Journal of the Korean Society for Precision Engineering;2024-08-01
2. Evaluation of data augmentation and loss functions in semantic image segmentation for drilling tool wear detection;Journal of Intelligent Manufacturing;2024-02-08
3. Monitoring of drill bit wear using sound and vibration signals analysis recorded during rock drilling operations;Modeling Earth Systems and Environment;2024-01-03
4. A Neural Network-Based Multi-Sensor On-Line Process Monitoring in Stone Machining;IFAC-PapersOnLine;2023
5. A Systematic Mapping Study on Machine Learning Techniques Applied for Condition Monitoring and Predictive Maintenance in the Manufacturing Sector;Logistics;2022-05-28
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3