Improving intrusion detection performance using keyword selection and neural networks

Author:

Lippmann Richard P,Cunningham Robert K

Publisher

Elsevier BV

Subject

Computer Networks and Communications

Reference14 articles.

1. J. Allen, A. Christie, W. Fithen, J. McHugh, J. Pickel, E. Stoner, State of the practice of intrusion detection technologies, Carnegie Mellon University/Software Engineering Institute Technical Report CMU/SEI-99-TR-028, January 2000

2. E.G. Amoroso, Intrusion Detection: An Introduction to Internet Surveillance, Correlation, Trace Back, Traps, and Response, Intrusion.Net Books, 1999

3. Cisco Systems Inc., NetRanger Intrusion Detection System Technical Overview, 1998, http://www.cisco.com/warp/public/778/security/netranger/ntran_tc.htm

4. T. Heberlein, Network security monitor (NSM) – Final Report, U.C. Davis, February 1995, http://seclab.cs.ucdavis.edu/papers/NSM-final.pdf

5. Lawrence Livermore National Laboratory, Network Intrusion Detector (NID) Overview, Computer Security Technology Center, 1998, http://ciac.llnl.gov/cstc/nid/intro.html

Cited by 103 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Methods and Benchmark for Detecting Cryptographic API Misuses in Python;IEEE Transactions on Software Engineering;2024-05

2. Web Intrusion Detection with Machine Learning Algorithm;2023 Global Conference on Information Technologies and Communications (GCITC);2023-12-01

3. A Survey of Data Mining and Machine Learning-Based Intrusion Detection System for Cyber Security;Advances in Information Security, Privacy, and Ethics;2023-11-09

4. Flow-MAE: Leveraging Masked AutoEncoder for Accurate, Efficient and Robust Malicious Traffic Classification;Proceedings of the 26th International Symposium on Research in Attacks, Intrusions and Defenses;2023-10-16

5. Intelligent Data Encryption Classifying Complex Security Breaches Using Machine Learning Technique;Effective AI, Blockchain, and E-Governance Applications for Knowledge Discovery and Management;2023-09-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3