In situ transformation of TiO2 hierarchical nanostructures toward efficient photoelectrochemical water splitting
Author:
Publisher
Elsevier BV
Subject
Materials Chemistry,Surfaces, Coatings and Films,Process Chemistry and Technology,Ceramics and Composites,Electronic, Optical and Magnetic Materials
Reference40 articles.
1. Electronic and optical properties of TiO2 by first-principle calculation (DFT-GW and BSE);Thatribud;Mater. Res. Express,2019
2. Preparation, characterization and growth mechanism of dandelion-like TiO2 nanostructures and their application in photocatalysis towards reduction of Cr(VI);Baloyi;Mater. Today Proc.,2015
3. An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures;Dong;Water Res.,2015
4. Photocatalytic degradation of gaseous toluene by using TiO2 nanoparticles immobilized on fiberglass cloth;Tasbihi;J. Photochem. Photobiol. Chem.,2017
5. Low-temperature in situ amino functionalization of TiO2 nanoparticles sharpens electron management achieving over 21% efficient planar perovskite solar cells;Hu;Adv. Mater.,2019
Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Enhancing efficiency of photoelectrochemical water splitting using zinc vanadate nanosheets (ZV) on manganese vanadate needle flowers (MV) supported by carbon nanofibers;Ceramics International;2024-10
2. High-performance TiO2/Ti photoanode using dielectric barrier discharge plasma for efficient solar water-splitting;Ceramics International;2024-09
3. Insights on Z-scheme interfacial charge transfer of TiO2-NRAs/BiOI-NFs/Au-NPs nanoheterostructures and unveiling enhanced photoelectrochemical performances;Arabian Journal of Chemistry;2024-06
4. Optical and photoelectrocatalytic performance of Tin (II) oxide silicate (Sn6SiO8) thin films as a photoanode by Aerosol Assisted Chemical Vapor Deposition;Optical Materials;2024-02
5. SnO2 tetragonal nanonails with enhanced optical and photoelectric performances via localized surface plasmon resonance effect of Au nanoparticles;Ceramics International;2024-01
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3