Joint Optimization for Service-Caching, Computation-Offloading, and UAVs Flight Trajectories Over Rechargeable UAV-Aided MEC Using Hierarchical Multi-Agent Deep Reinforcement Learning
-
Published:2024-09
Issue:
Volume:
Page:100844
-
ISSN:2214-2096
-
Container-title:Vehicular Communications
-
language:en
-
Short-container-title:Vehicular Communications
Author:
Chen Zhian, Wang FeiORCID, Wang Jiaojie
Reference34 articles.
1. J. X. Chen, X. B. Cao, P. Yang, M. Xiao, S. Q. Ren, Z. L. Zhao, and D. O. Wu, Deep reinforcement learning based resource allocation in multi-UAV-aided MEC networks, IEEE Trans. Commun. 71 (1) (2023) 296-309, http://dx.doi.org/10.1109/TCOMM.2022.3226193. 2. N. Zhao, Z. Y. Ye, Y. Y. Pei, Y. C. Liang, and D. Niyato, Multi-agent deep reinforcement learning for task offloading in UAV-assisted mobile edge computing, IEEE Trans. on Wireless Commun. 21 (9) (2022) 6949-6960, http://dx.doi.org/10.1109/TWC.2022.3153316. 3. M. A. Ebrahim, G. A. Ebrahim, H. K. Mohamed, and S. O. Abdellatif, A deep learning approach for task offloading in multi-UAV aided mobile edge computing, IEEE Access 10 (2022) 101716-101731, http://dx.doi.org/10.1109/ACCESS.2022.3208584. 4. X. Zhang, J. Tang, H.-H. Chen, S. Ci, and M. Guizani, Cross-layer-based modeling for quality of service guarantees in mobile wireless networks, IEEE Commun. Mag. 44 (1) (2006) 100-106, http://dx.doi.org/10.1109/MCOM.2006.1580939. 5. J. Tang and X. Zhang, Quality-of-service driven power and rate adaptation over wireless links, IEEE Trans. Wireless Commun. 6 (8) (2007) 3058-3068, http://dx.doi.org/10.1109/TWC.2007.051075.
|
|