Hydrodynamic limit for the Ginzburg–Landau ∇ϕ interface model with non-convex potential

Author:

Deuschel Jean-Dominique,Nishikawa Takao,Vignaud Yvon

Funder

University of Tokyo

Nihon University

Publisher

Elsevier BV

Subject

Applied Mathematics,Modelling and Simulation,Statistics and Probability

Reference15 articles.

1. Phase coexistence of gradient Gibbs states;Biskup;Probab. Theory Related Fields,2007

2. C. Cotar, J.-D. Deuschel, Decay of covariances, uniqueness of ergodic component and scaling limit for a class of ∇ϕ systems with non-convex potential, 2008. arXiv:0807.2621v1 [math.PR].

3. Decay of covariances, uniqueness of ergodic component and scaling limit for a class of ∇ϕ systems with non-convex potential;Cotar;Ann. Inst. H. Poincaré Probab. Statist.,2012

4. Strict convexity of the free energy for a class of non-convex gradient models;Cotar;Comm. Math. Phys.,2009

5. Large deviations and concentration properties for ∇φ interface models;Deuschel;Probab. Theory Related Fields,2000

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Quantitative hydrodynamic limits of the Langevin dynamics for gradient interface models;Electronic Journal of Probability;2024-01-01

2. Upper bounds on the fluctuations for a class of degenerate ∇φ-interface models;Latin American Journal of Probability and Mathematical Statistics;2024

3. Quantitative hydrodynamic limits of the Langevin dynamics for gradient interface models;Séminaire Laurent Schwartz — EDP et applications;2022-05-24

4. Phase transitions for a class of gradient fields;Probability Theory and Related Fields;2021-02-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3