Using size-based indicators to evaluate the ecosystem effects of fishing

Author:

Shin Yunne-Jai1,Rochet Marie-Joëlle2,Jennings Simon3,Field John G.4,Gislason Henrik5

Affiliation:

1. Institut de Recherche pour le Développement (IRD), CRHMT-Thetis Avenue Jean Monnet, BP 171, 34203 Sète Cedex, France

2. IFREMER, Laboratoire MAERHA BP 21105, 44311 Nantes Cedex 03, France

3. CEFAS, Lowestoft Laboratory Pakefield Road, Lowestoft NR33 0HT, England, UK

4. Zoology Department, University of Cape Town 7701 Rondebosch, South Africa

5. Danish Institute for Fisheries Research Charlottenlund Castle, DK2920 Charlottenlund, Denmark

Abstract

Abstract The usefulness and relevance of size-based indicators (SBIs) to an ecosystem approach to fisheries (EAF) are assessed through a review of empirical and modelling studies. SBIs are tabulated along with their definitions, data requirements, potential biases, availability of time-series, and expected directions of change in response to fishing pressure. They include mean length in a population, mean length in a community, mean maximum length in a community, and the slope and intercept of size spectra. Most SBIs can be derived from fairly standard survey data on length frequencies, without the need for elaborate models. Possible fishing- and environment-induced effects are analysed to distinguish between the two causes, and hypothetical cases of reference directions of change are tabulated. We conclude that no single SBI can serve as an effective overall indicator of heavy fishing pressure. Rather, suites of SBI should be selected, and reference directions may be more useful than reference points. Further modelling and worldwide comparative studies are needed to provide better understanding of SBIs and the factors affecting them. The slow response to fishing pressure reflects the complexity of community interactions and ecosystem responses, and prohibits their application in the context of short-term (annual) tactical fisheries management. However, movement towards longer-term (5–10 years) strategic management in EAF should facilitate their use.

Publisher

Oxford University Press (OUP)

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3