Machine learning optimization model for reducing the electricity loads in residential energy forecasting
Author:
Publisher
Elsevier BV
Subject
Electrical and Electronic Engineering,General Computer Science
Reference30 articles.
1. What we do–and don’t–know about the smart building: an analysis of the smart building literature;Solaimani;Indoor Built Environ.,2015
2. Siekkinen, M.; Hiienkari, M.; Nurminen, J.; Nieminen, J. How low energy is bluetooth low energy? Comparative measurements with ZigBee/802.15.4. In Proceedings of the Wireless Communications and Networking Conference Workshops (WCNCW), Paris, France, 1 April 2012; pp. 232–237.
3. Forecasting of energy demands for smart home applications;Bhatt;Energies,2021
4. Thomas, D.; Deblecker, O.; Bagheri, A.; Ioakimidis, C.S. A scheduling optimization model for minimizing the energy demand of a building using electric vehicles and a micro-turbine. In Proceedings of the 2016 IEEE International Smart Cities Conference (ISC2), Trento, Italy, 12–15 September 2016; pp. 1–6.
5. Energy management in smart building by a multi-objective optimization model and pascoletti-serafini scalarization approach;Foroozandeh;Processes,2021
Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A performance comparison of deep learning and shallow machine learning in acoustic emission monitoring of aluminium alloy pulsed laser welding;Soft Computing;2024-07-05
2. Multifeature-Based Variational Mode Decomposition–Temporal Convolutional Network–Long Short-Term Memory for Short-Term Forecasting of the Load of Port Power Systems;Sustainability;2024-06-22
3. Smart buildings with legacy equipment: A case study on energy savings and cost reduction through an IoT platform in Ireland and Greece;Results in Engineering;2024-06
4. Smart grid electricity theft prediction using cascaded R-CNN and hybrid metaheuristic optimization;Electrical Engineering;2024-05-18
5. A robust, resilience machine learning with risk approach: a case study of gas consumption;Annals of Operations Research;2024-05-07
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3