Performance prediction of tomato leaf disease by a series of parallel convolutional neural networks
Author:
Publisher
Elsevier BV
Reference30 articles.
1. International plant protection convention. 2017;Plant health and food security, Pamphlet 17829EN/1/09.17,2017
2. Plant disease severity estimated visually, by digital photography and image analysis, and by hyperspectral imaging;Bock;Crit. Rev. Plant Sci.,2010
3. Impact of dataset size and variety on the effectiveness of deep learning and transfer learning for plant disease classification;Barbedo;Comput. Electron. Agric.,2018
4. Detection of fruit-bearing branches and localization of litchi clusters for vision-based harvesting robots;Li;IEEE Access,2020
5. A deep-learning-based real-time detector for grape leaf diseases using improved convolutional neural networks;Xie;Front. Plant Sci.,2020
Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. TrioConvTomatoNet: A robust CNN architecture for fast and accurate tomato leaf disease classification for real time application;Scientia Horticulturae;2024-04
2. Modified BIRCH and Hybrid Deep Framework for Tomato Leaf Disease Segmentation and Classification;2024 5th International Conference on Intelligent Communication Technologies and Virtual Mobile Networks (ICICV);2024-03-11
3. Machine Learning Techniques for Detection and Classification of Crop (Solanum lycopersicum) Plant Diseases Due to Pests: A Review;Lecture Notes in Electrical Engineering;2024
4. High-performance deep transfer learning model with batch normalization based on multiscale feature fusion for tomato plant disease identification and categorization;Environmental Research Communications;2023-12-01
5. Coordinate Attention Mechanism with Convolutional Neural Network for Tomato Leaf Diseases;2023 International Conference on Integrated Intelligence and Communication Systems (ICIICS);2023-11-24
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3