Comparison of several measure-correlate-predict models using support vector regression techniques to estimate wind power densities. A case study

Author:

Díaz Santiago,Carta José A.,Matías José M.

Funder

State Meteorological Agency of the Ministry of Agriculture, Food and Environment of the Government of Spain

Canary Technological Institute

Publisher

Elsevier BV

Subject

Energy Engineering and Power Technology,Fuel Technology,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment

Reference58 articles.

1. A review of measure-correlate-predict (MCP) methods used to estimate long-term wind characteristics at a target site;Carta;Renew Sustain Energy Rev,2013

2. Comparison of feature selection methods using ANNs in MCP-wind speed methods. A case study;Carta;Appl Energy,2015

3. Use of Bayesian networks classifiers for long-term mean wind turbine energy output estimation at a potential wind energy conversion site;Carta;Energy Convers Manage,2011

4. A hybrid measure–correlate–predict method for long-term wind condition assessment;Zhang;Energy Convers Manage,2014

5. Patanè D, Benso M, Hernández C, deLaBlanca F, López C. Long term wind resource assessment by means of multivariate cross-correlation analysis. Paper number: 1452. In: Proceedings of the European wind energy conference and exhibition. Brussels, Belgium; 14–17 March 2011.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3