1. Algorithmic bias in data-driven innovation in the age of AI;Akter;Int. J. Inf. Manag.,2021
2. Anthropic, 2024. System prompts [WWW Document]. Syst. Prompts. URL 〈https://docs.anthropic.com/en/docs/system-prompts〉 (accessed 6.4.24).
3. Ashrafimoghari, V., Gürkan, N., Suchow, J.W., 2024. Evaluating Large Language Models on the GMAT: Implications for the Future of Business Education. https://doi.org/10.48550/arXiv.2401.02985.
4. Australian academics apologise for false AI-generated allegations against big four consultancy firms;Belot;Guardian,2023
5. Bender, E.M., Gebru, T., McMillan-Major, A., Shmitchell, S., 2021. On the Dangers of Stochastic Parrots: Can Language Models Be Too Big?, in: Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency, FAccT ’21. Association for Computing Machinery, New York, NY, USA, pp. 610–623. https://doi.org/10.1145/3442188.3445922.