1. A subdivision based algorithm for the sparse resultant;Canny;J. ACM,2000
2. Rectangular corner cutting and dixon A-resultants;Chionh;J. Symbolic Comput,2001
3. Chtcherba, A.D., 2003. A new Sylvester-type resultant method based on the Dixon–Bézout formulation, Ph.D. Dissertation. University of New Mexico, Department of Computer Science
4. Chtcherba, A.D., Kapur, D., 2000a. Conditions for Exact Resultants Using the Dixon Formulation. Proc. of ISSAC, ACM Press, St. Andrews, Scotland, 2000. pp. 62–70
5. Chtcherba, A.D., Kapur, D., 2000b. Extracting sparse resultant matrices from the Dixon resultant formultation. In: RCWA’00, Proceedings of 7th Rhine Workshop, pp. 167–182