Arrhythmia classification using ECG signal: A meta-heuristic improvement of optimal weighted feature integration and attention-based hybrid deep learning model
Author:
Publisher
Elsevier BV
Subject
Health Informatics,Signal Processing,Biomedical Engineering
Reference35 articles.
1. Evolution of mechanical properties of gypsum in time;Padevět;Int. J. Mech.,2011
2. Decision support systems for teambuilding;Yanova;Procedia Comput. Sci.,2017
3. A Self-Consistent Model for Thermal Oxidation of Silicon at Low Oxide Thickness;Gerlach;Adv. Condens. Matter Phys.,2016
4. An Ensemble of Deep Learning-Based Multi-Model for ECG Heartbeats Arrhythmia Classification;Essa;IEEE Access,2021
5. Interpretation and Classification of Arrhythmia Using Deep Convolutional Network;Singh;IEEE Trans. Instrum. Meas.,2022
Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Advancing cardiac diagnostics: Exceptional accuracy in abnormal ECG signal classification with cascading deep learning and explainability analysis;Applied Soft Computing;2024-11
2. A comparative study of heterogeneous machine learning algorithms for arrhythmia classification using feature selection technique and multi-dimensional datasets;Engineering Research Express;2024-07-16
3. Enhanced ECG Signal features transformation to RGB matrix imaging for advanced deep learning classification of myocardial infarction and cardiac arrhythmia;Multimedia Tools and Applications;2024-05-13
4. ILO: An Improved Lemur Optimizer for Global Optimization;Arabian Journal for Science and Engineering;2024-04-17
5. A Communication-Efficient Federated Learning Framework for Sustainable Development Using Lemurs Optimizer;Algorithms;2024-04-15
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3