1. State-of-the-art retinal optical coherence tomography;Drexler;Prog. Retin. Eye Res.,2008
2. Optical coherence tomography as a method for identifying benign and malignant microscopic structures in the prostate gland;D’Amico;Urology,2000
3. A. Krull, T.-O. Buchholz, F. Jug, Noise2void-learning denoising from single noisy images, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2129–2137.
4. Z. Wang, J. Liu, G. Li, H. Han, Blind2unblind: Self-supervised image denoising with visible blind spots, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2027–2036.
5. O. Ronneberger, P. Fischer, T. Brox, U-net: Convolutional networks for biomedical image segmentation, in: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October (2015) 5-9, Proceedings, Part III 18, Springer, pp. 234–241.