Novel adaptive fault detection method based on kernel entropy component analysis integrating moving window of dissimilarity for nonlinear dynamic processes
Author:
Publisher
Elsevier BV
Subject
Industrial and Manufacturing Engineering,Computer Science Applications,Modeling and Simulation,Control and Systems Engineering
Reference42 articles.
1. Fault detection and diagnosis of non-linear non-Gaussian dynamic processes using kernel dynamic independent component analysis;Fan;Inform. Sci.,2014
2. A novel fault diagnosis method based on improved negative selection algorithm;Ren;IEEE Trans. Instrum. Meas.,2021
3. A nonlinear process monitoring approach with locally weighted learning of available data;Yin;IEEE Trans. Ind. Electron.,2017
4. Data-driven mode identification and unsupervised fault detection for nonlinear multimode processes;Wang;IEEE Trans. Ind. Inform.,2020
5. Distributed parallel PCA for modeling and monitoring of large-scale plant-wide processes with big data;Zhu;IEEE Trans. Ind. Inform.,2017
Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Multi-sensor fault detection and correction for automated IAQ monitoring in smart buildings through attention-aware autoencoders with spatial prediction module;Journal of Building Engineering;2024-11
2. An adaptive few-shot fault diagnosis method based on virtual samples generated by fault characteristics of rotating machines;Engineering Applications of Artificial Intelligence;2024-10
3. Fault detection of nonlinear dynamic industrial processes based on improved kernel entropy component analysis;2024 36th Chinese Control and Decision Conference (CCDC);2024-05-25
4. Unsupervised transfer autoencoder model based on adversarial strategy for non-linear process monitoring;Control Engineering Practice;2024-04
5. Process monitoring and fault diagnosis method combining bagging DPCA‐ICA with moving window Kolmogorov–Smirnov test;The Canadian Journal of Chemical Engineering;2024-02-18
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3