Development of a read-across-derived classification model for the predictions of mutagenicity data and its comparison with traditional QSAR models and expert systems
Author:
Funder
Indian Council of Medical Research
Publisher
Elsevier BV
Subject
Toxicology
Reference43 articles.
1. Comparison of in silico models for prediction of mutagenicity;Bakhtyari;J. Environ. Sci. Health C. Environ. Carcinog. Ecotoxicol. Rev.,2013
2. Toward good read-across practice (GRAP) guidance;Ball;ALTEX 33,2016
3. First report of q-RASAR modeling toward an approach of easy interpretability and efficient transferability;Banerjee;Mol. Divers,2022
4. Machine-learning-based similarity meets traditional QSAR: “q-RASAR” for the enhancement of the external predictivity and detection of prediction confidence outliers in an hERG toxicity dataset;Banerjee;Chemom. Intell. Lab. Syst.,2023
5. Prediction-inspired intelligent training for the development of classification read-across structure-activity relationship (c-RASAR) models for organic skin sensitizers: assessment of classification error rate from novel similarity coefficients;Banerjee;Chem. Res Toxicol.,2023
Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Molecular similarity in chemical informatics and predictive toxicity modeling: from quantitative read-across (q-RA) to quantitative read-across structure–activity relationship (q-RASAR) with the application of machine learning;Critical Reviews in Toxicology;2024-09-03
2. Accurate & simple open-sourced no-code machine learning and CDFT predictive models for the antioxidant activity of phenols;Computational and Theoretical Chemistry;2024-09
3. DeepRA: A novel deep learning-read-across framework and its application in non-sugar sweeteners mutagenicity prediction;Computers in Biology and Medicine;2024-08
4. Identification of structural features of surface modifiers in engineered nanostructured metal oxides regarding cell uptake through ML-based classification;Beilstein Journal of Nanotechnology;2024-07-22
5. How to correctly develop q-RASAR models for predictive cheminformatics;Expert Opinion on Drug Discovery;2024-07-05
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3