Multi-degradation-adaptation network for fundus image enhancement with degradation representation learning
-
Published:2024-10
Issue:
Volume:97
Page:103273
-
ISSN:1361-8415
-
Container-title:Medical Image Analysis
-
language:en
-
Short-container-title:Medical Image Analysis
Author:
Guo RuoyuORCID, Xu YiwenORCID, Tompkins AnthonyORCID, Pagnucco Maurice, Song Yang
Reference77 articles.
1. Afifi, M., Derpanis, K.G., Ommer, B., Brown, M.S., 2021. Learning multi-scale photo exposure correction. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition. CVPR, pp. 9157–9167. 2. Broaddus, C., Krull, A., Weigert, M., Schmidt, U., Myers, G., 2020. Removing Structured Noise with Self-Supervised Blind-Spot Networks. In: IEEE International Symposium on Biomedical Imaging. ISBI, pp. 159–163. 3. Cai, Y., Hu, X., Wang, H., Zhang, Y., Pfister, H., Wei, D., 2021. Learning to generate realistic noisy images via pixel-level noise-aware adversarial training. In: Advances in Neural Information Processing Systems. NeurIPS, pp. 3259–3270. 4. Chen, L., Chu, X., Zhang, X., Sun, J., 2022. Simple Baselines For Image Restoration. In: European Conference on Computer Vision. ECCV, pp. 17–33. 5. Chen, X., He, K., 2021. Exploring simple siamese representation learning. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition. CVPR, pp. 15750–15758.
|
|