The STOIC2021 COVID-19 AI challenge: Applying reusable training methodologies to private data
-
Published:2024-10
Issue:
Volume:97
Page:103230
-
ISSN:1361-8415
-
Container-title:Medical Image Analysis
-
language:en
-
Short-container-title:Medical Image Analysis
Author:
Boulogne Luuk H.ORCID, Lorenz Julian, Kienzle Daniel, Schön Robin, Ludwig Katja, Lienhart Rainer, Jégou Simon, Li Guang, Chen Cong, Wang Qi, Shi Derik, Maniparambil Mayug, Müller Dominik, Mertes Silvan, Schröter Niklas, Hellmann Fabio, Elia Miriam, Dirks Ine, Bossa Matías Nicolás, Berenguer Abel Díaz, Mukherjee Tanmoy, Vandemeulebroucke Jef, Sahli Hichem, Deligiannis Nikos, Gonidakis Panagiotis, Huynh Ngoc Dung, Razzak Imran, Bouadjenek Reda, Verdicchio Mario, Borrelli Pasquale, Aiello Marco, Meakin James A., Lemm Alexander, Russ Christoph, Ionasec Razvan, Paragios Nikos, van Ginneken Bram, Revel Marie-Pierre
Reference88 articles.
1. Deep learning for detection and segmentation of artefact and disease instances in gastrointestinal endoscopy;Ali;Med. Image Anal.,2021 2. Ct images in covid-19. The cancer imaging archive;An,2020 3. The medical segmentation decathlon;Antonelli,2021 4. Crowdsourcing the creation of image segmentation algorithms for connectomics;Arganda-Carreras;Front. Neuroanat.,2015 5. Mitosis domain generalization in histopathology images - The MIDOG challenge;Aubreville;Med. Image Anal.,2022
|
|