1. Baid, U., Ghodasara, S., Mohan, S., Bilello, M., Calabrese, E., Colak, E., Farahani, K., Kalpathy-Cramer, J., Kitamura, F.C., Pati, S., et al., 2021. The rsna-asnr-miccai brats 2021 benchmark on brain tumor segmentation and radiogenomic classification. arXiv preprint. arXiv:2107.02314.
2. Swin-unet: Unet-like Pure Transformer for Medical Image Segmentation abs/2105.05537;Cao,2021
3. Cao, Q., Trivedi, H., Balasubramanian, A., Balasubramanian, N., 2020. Deformer: Decomposing pre-trained transformers for faster question answering. arXiv preprint. arXiv:2005.00697.
4. Emerging properties in self-supervised vision transformers;Caron,2021
5. Chen, J., Lu, Y., Yu, Q., Luo, X., Adeli, E., Wang, Y., Lu, L., Yuille, A.L., Zhou, Y., 2021. Transunet: Transformers make strong encoders for medical image segmentation. arXiv preprint. arXiv:2102.04306.