1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X., 2015. TensorFlow: Large-scale machine learning on heterogeneous systems.
2. Pivotal trial of an autonomous ai-based diagnostic system for detection of diabetic retinopathy in primary care offices;Abràmoff;NPJ Digital Med.,2018
3. Deep learning predicts oct measures of diabetic macular thickening from color fundus photographs;Arcadu;Invest. Ophthalmol. Vis. Sci.,2019
4. End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography;Ardila;Nat. Med.,2019
5. Test-time data augmentation for estimation of heteroscedastic aleatoric uncertainty in deep neural networks;Ayhan,2018