1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X., 2015. TensorFlow: Large-scale machine learning on heterogeneous systems. Software available from tensorflow.org.
2. UI-Net: interactive artificial neural networks for iterative image segmentation based on a user model;Amrehn,2017
3. Artificial intelligence in pediatric and adult congenital cardiac MRI: an unmet clinical need;Arafati;Cardiovasc. Diagn. Ther.,2019
4. Utility and scope of rapid prototyping in patients with complex muscular ventricular septal defects or double-outlet right ventricle: does it alter management decisions?;Bhatla;Pediatr. Cardiol.,2017
5. Interactive graph cuts for optimal boundary and region segmentation of objects in N-D images;Boykov,2001