Subject
Computer Graphics and Computer-Aided Design,Health Informatics,Computer Vision and Pattern Recognition,Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology
Reference48 articles.
1. Image processing and quality control for the first 10,000 brain imaging datasets from UK Biobank;Alfaro-Almagro;Neuroimage,2018
2. A reproducible evaluation of ANTs similarity metric performance in brain image registration;Avants;Neuroimage,2011
3. Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features;Bakas;Sci. Data,2017
4. Bakas, S., Reyes, M., Jakab, A., Bauer, S., Rempfler, M., Crimi, A., Shinohara, R.T., Berger, C., Ha, S.M., Rozycki, M., 2018. Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge. arXiv Prepr. arXiv:1811.02629.
5. Baur, C., Denner, S., Wiestler, B., Albarqouni, S., Navab, N., 2020a. Autoencoders for Unsupervised Anomaly Segmentation in Brain MR Images: A Comparative Study. arXiv Prepr. arXiv:2004.03271.
Cited by
76 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献